This Asset we are sharing with you the Applied Machine Learning With Python free download links. On our website, you will find lots of premium assets free like Free Courses, Photoshop Mockups, Lightroom Preset, Photoshop Actions, Brushes & Gradient, Videohive After Effect Templates, Fonts, Luts, Sounds, 3d models, Plugins, and much more. Psdly.com is a free graphics content provider website that helps beginner graphic designers as well as freelancers who can’t afford high-cost courses and other things.
File Name: | Applied Machine Learning With Python |
Content Source: | https://www.udemy.com/course/applied-machine-learning-with-python/ |
Genre / Category: | Programming |
File Size : | 2.9GB |
Publisher: | udemy |
Updated and Published: | October 03, 2022 |
Interested in the field of Machine Learning? Then this course is for you! This course has been designed by two professional Data Scientists so that we can share our knowledge and help you learn complex theories, algorithms, and coding libraries in a simple way. We will walk you step-by-step into the World of Machine Learning. With every tutorial, you will develop new skills and improve your understanding of this challenging yet lucrative sub-field of Data Science.
This course is fun and exciting, but at the same time, we dive deep into Machine Learning. It is structured the following way:
- Part 1 – Data Preprocessing
- Part 2 – Regression: Simple Linear Regression, Multiple Linear Regression, Polynomial Regression, SVR, Decision Tree Regression, Random Forest Regression
- Part 3 – Classification: Logistic Regression, K-NN, SVM, Kernel SVM, Naive Bayes, Decision Tree Classification, Random Forest Classification
- Part 4 – Clustering: K-Means, Hierarchical Clustering
- Part 5 – Association Rule Learning: Apriori, Eclat
- Part 6 – Reinforcement Learning: Upper Confidence Bound, Thompson Sampling
- Part 7 – Natural Language Processing: Bag-of-words model and algorithms for NLP
- Part 8 – Deep Learning: Artificial Neural Networks, Convolutional Neural Networks
- Part 9 – Dimensionality Reduction: PCA, LDA, Kernel PCA
- Part 10 – Model Selection & Boosting: k-fold Cross Validation, Parameter Tuning, Grid Search, XGBoost
Moreover, the course is packed with practical exercises that are based on real-life examples. So not only will you learn the theory, but you will also get some hands-on practice building your own models.
And as a bonus, this course includes both Python and R code templates which you can download and use on your own projects.
DOWNLOAD LINK: Applied Machine Learning With Python
Applied_Machine_Learning_With_Python.part1.rar – 2.0 GB
Applied_Machine_Learning_With_Python.part2.rar – 900.7 MB
FILEAXA.COM – is our main file storage service. We host all files there. You can join the FILEAXA.COM premium service to access our all files without any limation and fast download speed.